
AFRL-IF-RS-TR-2005-24
In-House Report
January 2005

THE DESIGN OF A FREQUENCY DOMAIN
INTERFERENCE EXCISION PROCESSOR USING
FIELD PROGRAMMABLE GATE ARRAYS

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

This report has been reviewed by the Air Force Research Laboratory,
Information Directorate, Public Affairs Office (IFOIPA) and is releasable to the National
Technical Information Service (NTIS). At NTIS it will be releasable to the general
public, including foreign nations.

AFRL-IF-RS-TR-2005-24 has been reviewed and is approved for publication

APPROVED: /s/

STEPHEN C. TYLER
Project Engineer

FOR THE DIRECTOR: /s/

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
JANUARY 2005 In-House Final, Oct 94- Jun 04

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
THE DESIGN OF A FREQUENCY DOMAIN INTERFERENCE EXCISION C - N/A
PROCESSOR USING FIELD PROGRAMMABLE GATE ARRAYS PE - 602702F

PR -4519
TA - 42

6. AUTHOR(S) WU - 89
Stephen C. Tyler

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Research Laboratory/IFGC REPORT NUMBER

525 Brooks Road
Rome New York 13441-4505

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Air Force Research Laboratory/IFGC AGENCY REPORT NUMBER

525 Brooks Road
Rome New York 13441-4505 AFRL-I F-RS-TR-2005-24

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Stephen C. Tyler/IFGC/(315) 330-3466/ Stephen.Tyler@rl.af.mil

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DIS TRIBUTION CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT (Maximum 200 Words)
This report describes in-house work performed by AFRL which had a two-fold objective: development of a
software/hardware testbed, and the design of a communications sub-system using this testbed. The report discusses
the methodology involved in developing a testbed which utilized Field Programmable Gate Array (FPGA) technology.
Several methods of programming FPGAs is discussed (writing Hardware Description Language vs. using schematic-
based tools). An interference mitigation filter was subsequently developed using the testbed. The filter utilizes the
frequency domain in order to identify and remove stationary and non-stationary narrowband interference from a direct
sequence spread spectrum waveform.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Field Programmable Gate Array, Communications, Direct Sequence Spread Spectrum, 27
Interference Mitigation, Frequency Domain 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

1.0 Introduction ... 1
1.1 The Field Programm able G ate Array ... 1
1.2 Design M ethodology .. 2

2.0 Interference Excision Processor ... 6
2.1 Overview ... 6
2.2 Im plem entation ... 7

3.0 Excision Test System ... 12
3.1 GV D SP H ardw are Accelerator .. 12
3.2 Transmitter, Channel, and Receiver Configuration 14
3.3 D SSS Transm itter/Receiver ... 15

4.0 Test Results .. 17

5.0 Conclusions .. 21

6.0 References ... 22

List of Figures

Figure 1.1-1: A Simple Representation of a Basic FPGA ... 2

Figure 1.2-1: Xilinx Engineering Capture System .. 4

Figure 1.2-2: VHDL Design Flow ... 5

Figure 2.1-1: Conceptual Block Diagram .. 6

Figure 2.2-1: N-Sigma Top Level Schematic ... 8

Figure 2.2-2: SPW Magnitude/Log Approximation Using SPW 9

Figure 2.2-3: ECS Symbol of SPW Log Function ... 10

Figure 2.2-4: Excision Sub-system Schematic ... 11

Figure 3.1-1: G V A FPG A Board ... 13

Figure 3.2-1: Simplified Block Diagram of Test System ... 14

Figure 3.3-1: Direct Sequence Spread Spectrum (DSSS) Transmitter 15

Figure 3.3-2: Direct Sequence Spread Spectrum (DSSS) Receiver 16

Figure 4.0-1: The DSSS Signal Magnitude Spectrum .. 17

Figure 4.0-2: In FFT-Processed Time Waveforms .. 18

Figure 4.0-3: Direct Sequence Spread Spectrum PN-chips .. 18

Figure 4.0-4: DSSS Signal Spectrum with Jamming .. 19

Figure 4.0-5: DSSS Signal with Jamming - Excision Disabled 19

Figure 4.0-6: DSSS Signal with Jamming - Excision Enabled 20

Figure 4.0-7: DSSS Signal Spectrum with Jamming - Excision Enabled............ 20

ii

1.0 Introduction

This report will discuss research and development work performed at the Air
Force Research Laboratory's Rome Research Site (AFRL-RRS). Government personnel
from the Information Connectivity Branch (IFGC) performed this work in-house. The
Information Connectivity Branch is concerned with, in part, wireless applications as they
relate to Air Force systems.

In order to test and evaluate advanced communications and signal processing
concepts, IFGC has developed several prototyping facilities, or 'testbeds'. Collectively,
these testbeds utilize a wide range of today's advanced digital hardware, including:
multiple digital signal processors (DSPs), application specific integrated circuits (ASICs),
and field programmable gate arrays (FPGAs). As one would expect, each technology has
strengths and weaknesses; thus researchers match the algorithm with the most appropriate
device technology.

This report will focus on one of these rapid prototyping technologies, namely,
FPGAs [1, 2]. The FPGA was introduced as a reprogrammable logic device for use in
any situation in which the logic configuration of the device needed to be changed
periodically. For example, prototyping digital designs became popular using FPGAs, or
creating products that could be 'field upgraded' at some future point-in-time as
algorithms improved or standards changed. FPGAs debuted in the mid-1980's with
several thousand programmable logic gates; today's state-of-the-art devices can provide
over ten million. As these devices became more sophisticated, they added a new role:
an alternative to Application Specific Integrated Circuits when production volumes were
low.

1.1 The Field Programmable Gate Array

In a simplistic sense, an FPGA is a digital device consisting of 3 major
components. IOBs, or input/output blocks, allow signals to enter and exit the device via
the external 'pins' of the chip. Today's devices can have hundreds of pins, allowing
massive amounts of data movement into and out of the chip. Next, a matrix of user
programmable "logic cells" (referred to as combinational logic blocks or CLBs by one
major FPGA vendor), are configured in order to implement the engineers design. These
logic cells vary considerably from vendor to vendor, and even within the vendors'
product line. And finally, routing resources are used to interconnect logic cells and to
bring signals to and from IOBs.

Interconnect
I/O Resources
Block

User Programmable
Logic Blocks

Figure 1.1-1: A Simple Representation of a Basic FPGA. I/O blocks route
signals into and off of the chip. Logic blocks implement the user's design. Interconnect
resources tie IOBs and Logic Blocks together.

FPGAs have become much more sophisticated now with on-board memory,
embedded multipliers, and even imbedded fixed-point processors. The reader is
encouraged to view the manufacturer's links provided for the latest on this quickly
evolving technology [1, 2].

1.2 Design Methodology

FPGA synthesis tools use a Hardware Description Language (HDL), such as
VHDL or Verilog, in order to produce the 'logic' that will be used by the FPGA to
implement one's design. A very important question arises: how does the designer
produce this 'HDL code' that describes the design? To answer this question was, in fact,
one of the goals of this research effort. There are various design paths currently being
used. Two of the most common forms of design entry will be discussed, namely, writing
HDL code and schematic-based design.

Some designers prefer writing a "program like" HDL file which represents the
logic within the design. This is a powerful, compact, and precise way to approach the
problem. Each design component has a file associated with it, and once written, can be
used repeatedly throughout the design. Designing new components often does not
require 'starting from scratch', as one can use preexisting files for a launching point.
The following is an example of an HDL code. In this instance, the language is VHDL
and the code represents a two input OR gate:

2

library ieee;
use ieee.std logic 1164.all;

entity OR ent is
port(x: in std logic;

y: in std logic;
F: out std logic

end OR ent;

architecture OR arch of OR ent is
begin

process(x, y)
begin

-- compare to truth table
if ((x='O') and (y='O')) then

F <= '';
else

F <= '';
end if;

end process;

end OR arch;

architecture OR beh of OR ent is
begin

F <= x or y;

end OR beh;

Another common approach is to use some form of schematic entry tool. The user
creates a design using components from a preexisting library within a graphical user
interface. Virtual wires are used to interconnect components together or connect
components to JOBs. In this approach, the symbols represent HDL files; once the design
is complete, vendor software is responsible for integrating these files into an overall HDL
file representing the design. Figure 2 displays the graphical user interface (GUI) of the
Xilinx Engineering Capture System (ECS), part of the Xilinx Integrated Software
Environment (ISE). In typical schematic form, components are connected using lines,
which represent single circuits, or thicker lines, which represent buses. Components have
inputs on the left and outputs on the right. Special symbols, referred to as IO markers,
denote inputs and outputs to the FPGA (via the JOBs). The important thing to note here
is that this schematic may look like a circuit board layout, with several stand-alone chips
being interconnected by bus and circuit traces. This is not the case; the whole design will
be 'fit' into a single FPGA.

The Xilinx ECS software tool is obviously only going to work for Xilinx FPGAs. Thus
each FPGA vendor sells specific tools for their specific product line - all highly
proprietary. There are other vendors who sell tools that, through various methods,
produce 'generic' HDL code. This code can then be used for various FPGA devices; the
device vendor's software will take that generic code and convert it for use with their

3

particular architecture. One such generic tool is CoWare's Signal Processing
Worksystem [3] or SPW. SPW is first and foremost, a digital signal processing system-
level simulator. SPW is typically used first to verify a concept from a high-level
standpoint. But, it can also be used to test and simulate fixed-point designs and create
HDL files from these designs. SPW was used in both roles for this in-house effort.
Figure 1.2-2 shows the relationship to the Xilinx development system.

rr7 Kil EC -di Vfiwt Add ersem lc MISR'

" i i 1 I I ' N. ISe ectBranches ep Connecuor

I_ 2 3 4

S •c:/xnx sewo rk/

• R M.Z(im g) ff..: bin fft Arithmeitic
[A ag)... Buffer

.CarryLogic
R "6gte e rrux 1024 PT-FFT (COREl CoF m -parator
........... �DCounter

. s. Gen . . .era

ýte,,o .× iuo M4-

RM_ Xe. 1 bs Iac..accl b

r ____ 11d 1211___ acdo)U

. . . [I cc8

.dd_l 2 _ip

ýg) add - 6_i

a d~vadd 26 cea~~~d•J~ • 226 C

.- aidoJ•

. . . -I .:z [] ý 61 - -F l

Figure 1.2-1: Xilinx Engineering Capture System. This software allows the designer
to create schematic-like diagrams representing the design that will be implemented on the
FPGA.

In addition to the above approaches, design components can be supplemented
with Intellectual Property (IP) cores. IP cores are ready-made functions that range in
complexity, but are typically components which are much more sophisticated than
standard library components, and may be highly proprietary. Fast Fourier Transforms
(FFTs) and Digital Down Converters (DDCs) are two examples of IP cores. Vendor
software included with the IP cores typically allow for parameter adjustment within the
specific components, for example, adjusting the size of the FFT, or coefficients within a
filter. IP cores can be supplied from a large number of vendors. The cost of IP cores
varies greatly; the FPGA vendors sometimes give it away, but many times, for
complicated cores, or proprietary cores, there is significant cost.

4

As a final outcome, all of these methods produce a HDL file which represents the
design; a file the synthesis tool will use for synthesizing logic that will ultimately be
'placed' within the FPGA.

The question remained: design using 'schematic' or write HDL code? Obviously,
both methods have advantages and disadvantages. One could argue that the approach of
writing HDL code is more powerful, more compact, more portable, but also less intuitive,
harder to debug, and harder for people not familiar with the design to understand. On-
the-other-hand, one could argue that schematic-based design is more intuitive, has a
smaller learning curve, and can be easier for others to understand, but limits you to
libraries available (what if they don't have a component your design needs?), is less
efficient, and is not 'portable' across FPGA vendors.

After much thought, a hybrid approach was chosen; schematic-based design
would be used as much as possible and HDL (VHDL, in this case) generation used when
needed. Actually, two forms of schematic-based design are used in this testbed, namely,
SPW and ECS, as can be seen from Figure 1.2-2.

Multi-Source VHDL Design Flow

Xnteig atteedraSoftwar E r eme Es of digon, (ISE3

pSat SPW dIevelopedUVHý

-ModelShin VHDL Functional simulator [- •inx\ hm11emen1C1 ion1 Yo

• simulates combined VHDL - S\y[it 1Ci/ V I N
systein/subsystemn -i miht/1 PPtck OI

I To FPGA frTs

Figure 1.2-2: VHDL Design Flow. Various software packages allow multi-level
simulation of design concepts in order to verify design and assist with debug. Xilinx
Integrated Software Environment truly integrates many facets of design, including 3rd_

party SPW developed VHDL.

2.0 Interference Excision Processor

2.1 Overview

Wireless communication systems, due to the fact that they transmit and receive
signals over 'free space' channels, are susceptible to noise and interference. Military
systems have the additional burden of operating in channels with hostile electromagnetic
interference, i.e., a channel in which an adversary is intentionally trying to disrupt (aka
'jam') the communications signal. Many techniques have been developed over the years
to make military communications signals more 'robust' to hostile channels. Some
techniques, such a Direct Sequence Spread Spectrum (DSSS), 'fortify' the transmitted
signal in order to make it more resilient to jamming and/or interference. Other
techniques attempt to remove channel impairments at the receiver. Frequency excision,
which is the focus of this research, falls into the latter category. It is important to note
that frequency excision is typically used in combination with a wideband waveform, such
as a DSSS signal, for reasons which will become clear shortly.

The goal for this work was to implement, in real-time, a frequency domain-based
interference excision processor using the FPGA techniques outline in the previous
section. Frequency excision can be implemented at various stages in the demodulation
process, but for ease of implementation and maximum portability between various
wireless systems, implementation was performed at baseband.

This work was based in large part on the work of Mitre Corporation [4]. Their work
resulted in an excision processor being developed specifically for the Global Positioning
System (GPS). Their design was implemented on an ASIC device. Their journal article
provided valuable insight into the concept of frequency excision. In addition, many
implementation details were included, such as shortcuts for reducing logic resources.

024-p 024-pt

Window• - *

Ra pi Raied i PN- a1024-pt

Figure 2.1-1: Conceptual Block Diagram. Forward and inverse FFTs surround
excision algorithm. Windowing of received data samples necessitates 50% overlap, dual-
path processing.

6

The conceptual block diagram for this concept can be seen in Figure 2.1-1. But
before getting into any details, here is the simplified version: convert the received
baseband signal (consisting of the DSSS signal, noise and jamming) to the frequency
domain, look for and remove (hence the term excision) any frequency components which
appear to be jamming, then convert the 'excised' signal back to the time domain for
normal demodulation. This technique can therefore be thought of as a 'black box'
process that can be used in a variety of communication systems.

It is important to note that when you remove frequency components which
contain jamming, you are also removing the desired signal - the two are inseparable.
Here is the reason for the DSSS signal; even with a portion of the spread spectrum
waveform removed, the information signal can still be retrieved. Thus, when used
together, DSSS and interference excision create a very robust 'system approach' against
narrowband jamming.

Converting to the frequency domain and back again to the time domain is costly
from a computational standpoint - so why is this done? The reason is to transform the
received signal to an optimal 'domain' or 'space' in which to remove the jamming.
Narrowband jammers (such as a continuous wave (CW) jammers) or partial band
jammers (such as multiple CW, or CW jammers which have non-stationary frequencies,
such as 'swept' or 'hopped' CW jammers) can be more easily identified and remove in
the frequency domain rather than the time domain. Conversely, this technique would not
work for jamming or interference which occupied the same bandwidth as the desired
signal.

2.2 Implementation

Obviously, the key component in this design is the FFT and inverse FFT engine.
The 'size' of the FFT refers to the number of data points used in the transform. As one
may expect, there are many advantages to increasing the FFT size. For example, the
more data points used, the greater the frequency resolution per output sample. In
addition, larger transform sizes (along with windowing) make it easier to contain
narrowband components. Disadvantages include more latency, more processing
resources, more power, etc. A 1024-point transform was chosen for this design.

In order to quickly and efficiently produce a working excision system, it was
determined early on that the task of building an FFT engine from scratch would not be
feasible. Thus, an TP core would be the only solution. Several companies do offer FFT
IP cores - for a fee. Xilinx offered a 'no cost' (included in the foundation tool set) FFT
IP core engine which was complete with the exception of memory elements. The
company included detailed instructions on how to build any one of three FFT systems
using this core engine. The three systems offered were single, dual, and triple memory
space configurations based on user requirements and available resources. The single
memory space configuration forced the FFT core to use one memory element between
input and output calculating cycles. The core, when configured like this, could not
operate in a continuous fashion in terms of incoming samples. The double memory space

7

configuration solved this problem, by having both an input and output memory space.
And finally, the triple memory space configuration used a two input memory
configuration in a 'ping-pong' arrangement to relax loading requirements of the double
memory space design. The triple memory space configuration was chosen and
successfully developed. This Xilinx FFT core offered several FFT block sizes, with a
maximum size of 1024 samples (of real and imaginary data). For maximum resolution,
the 1024-pt block size was chosen. A side note: because of the use of a 1024-pt FFT,
data is grouped in 1K 'blocks' throughout this design.

Shortly after successfully developing the triple memory space (TMS) FFT, Xilinx
offered a new and improved FFT IP core. The new FFT core handled all of the memory
requirements internally, and, more importantly, utilized on-chip 18-bit by 18-bit
multipliers found on the Xilinx Virtex-JI FPGAs. The older TMS IP core was quickly
replaced with the newer core. Thus, the TMS FFT core was replaced with a higher
performing, less complicated (from a user development standpoint), less resource
intensive, newer FFT core. This was especially significant due to the fact that 4 FFT
processors were needed for this design. The joys of progress! Figure 2.2-1 is the top-
level schematic, which was produced in the Xilinx ISE environment.

N-Sigma Excision System

I_ 1- 2. ..

• e~ l~b Z. 126

Figure 2.2-1: N-Sigma top level schematic. This schematic contains not only
the excision system, but also the DSSS transmitter and receiver. The analog jammer is
combined with the transmitted signal at this level.

8

As can be seen in Figure 2.1-1, the first step in the excision process is data
windowing. It is important to 'contain' the jamming signal in as few FFT bins as
possible, because excision (or more simply stated, removal) of spectral components
includes both jammer and desired signal. Therefore, the incoming data is windowed
using a raised-cosine (amplitude weighting) windowing function in order to concentrate
jammer energy in as few bins as possible. If the incoming samples are processed with no
amplitude weighting function, jamming energy 'leaks' into the entire spectrum due to the
spectral properties of the rectangular window, thus reducing the effectiveness of
frequency excision. Windowing the incoming data has the effect of de-emphasizing
samples at the beginning and end of a record - where discontinuities, and the
corresponding spectral leakage, occur. An unfortunate result of windowing is the loss of
information at the record boundaries. To overcome this deficiency, a dual processing path
approach is taken, with 50% overlap of the incoming data. The two data streams are
combined after processing. As a result, this requires twice the FFT, excision, and inverse
FFT processing. As can be seen in Figure 2.1-1, the lower data path has a fixed 512
sample delay (1/2 of the 1024 block) as part of the 50% overlap processing.

for the approximation of the magnitude and logarithm function was developed (and

simulated) using SPW. The software then automatically created a VHDL file
representing the block.

1ý L r Vl,, ,jv L-ýi 10ý 1,"'In :19

The next step is to perform the forward FFTs. The input and output samples used
by the FFT core are 16-bit, with higher bit width utilized internally to the IP core. As
stated earlier, a second generation Xilinx IP core was implemented which utilized the 18
by 18 bit on-chip multipliers. It is important to note that the output of the FFT is real and
imaginary frequency samples; not the energy or power spectrum that is generally
associated with 'frequency domain' graphs. All of the discussions so far have referred to
the frequency spectrum which is the magnitude of the real and imaginary values
produced by the FFT. Calculating the magnitude is the first operation performed by the
excision block. A combined logarithm and magnitude function was developed using
SPW, which can be seen in Figure 2.2-2. The concept was simulated within the SPW
environment to ensure correct operation and to optimize the design. When the
development was complete, the SPW software created a VHDL file. This file was
imported into the Xilinx Integrated Software Environment (ISE) as a VHDL module. A
symbol representing this imported code was automatically generated by ISE and added to
a library of preexisting symbols for use within the Xilinx schematic editor. Figure 2.2-3
displays the SPW code after importing into the ISE environment.

FiI- E1, v I I T k H l IT

L

.... ±
.i e .p. .i. o

g ure S W Log / . .agnitude

.. SPW SPW Magsaitude/Log .a ...

ITe rt sput rodul

10put Mag(15) log func
~~~~~~~~~~~~~t Ir~_____________________

Figure~~~~J, 2.-3 ECI yblo P o ucinTemgiuelgrtmfnto
of ~ ~ ~ .. Figur 2.2-1 is. show now. as. a syblinte.iix..ertd.otar .nirnet

The ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~.. .P geeaedVD.od.a.ipre.a..HL oue n ymo a
geneate rereenin this module. .... ..

.... .. 10



The next stage is the excision algorithm itself. From a theoretical standpoint, the
excision algorithm is not a particularly complicated one; it looks for frequency bins that
are significantly 'outside' an average value. Since the desired signal is a DSSS
waveform, the spectral characteristic are uniform and fairly flat; thus aiding in identifying
jamming signals. Two key statistics that are calculated every 1K block: mean and
standard deviation. The data output from the FFT is sequential; as a new complex sample
arrives at the input, a processed sample is output (there is an initial delay before samples
start to be output from the device, the delay value depends upon configuration of the
FFT). The design of this overall system accommodates this sequential architecture.
Therefore, in order to gather statistics about a block of samples, all samples need to be
present. This necessitates a buffering of the frequency samples that are to be processed.

[I lI tI I v 4d I ,o , I W' J rPA I-J

61 COj IL- e -A-) Q -P vI :

E. LI A L? 1 0

44

I di ÷ d G~~~b3 t, 1InL6ncb~t

S• th -h.1d

dtoerm inge Eexiintrsodvle

-g 1024 32b
111 J Hen -dr 1 1 LBeF~~c~~ionk~F FpQ~a i~& ni

1~IrepQ-n20k

1 0

Figure 2.2-4: Excision Sub-system Schematic. Statistics of frequency samples (mean
and standard deviation) are calculated here on a block by block basis in order to
determine excision threshold value.



In order to obtain the standard deviation, the square root function needed to be
implemented (remembering that the standard deviation is the square root of the variance).
There are approximations for this function, due to its computationally intense nature. But
after reviewing the Xilinx IP core offerings, it was decided to use their no-charge core.

Once the blocks statistics are gathered, the following formula is applied:

Excision Threshold = (mean + (scale factor)*(standard deviation))

Any samples above this threshold are simply set to zero. The scale factor was
determined by experimentation and would vary depending upon several implementation
issues.

After the excision unit, the frequency samples are then converted back to the time
domain. It is important to note that in order to determine which frequency samples to
excise, the magnitude function was used. All of the statistics were based upon magnitude
samples, but ultimately, real and imaginary samples from the forward FFT were excised,
not magnitude/phase samples. Thus, when converting back to the time domain, no
magnitude conversion was necessary; these samples were simply input to the inverse
FFT. After being processed by the inverse FFT, the real components were summed to
create the 'end result' data stream. The next step, which is not considered part of the
excision system, would be normal dispreading of the DSSS signal. A bypass function
was incorporated which allows relative comparison of performance with and without the
excision system present in the demodulation chain.

A timing sub-system was developed which included a Xilinx Digital Clock
Manager (DCM) consisting a clock delay lock loop used to minimize clock skew. The
timing sub-system also handled resets, FFT enable lines, D/A and A/D clocks, and
system clocks.

3.0 Excision Test System

3.1 GV DSP Hardware Accelerator

In order to test the interference excision processor, a specialized FPGA board
was purchased from a Xilinx 'partner' company, GV & Associates, Inc. The GVA-350 is
referred to as a "Virtex-II hardware Accelerator". This stand-alone board contains the
following:

- 2 Virtex-II 6000s (XV26000) FPGAs for signal processing
- 2 Spartan-Il FPGAs for external interface and configuration control
- 4 channels of 100 MSPS 12-bit analog-to-digital (A/D) conversion
- 4 channels of 100 MSPS 12-bit digital-to-analog (D/A) conversion
- 512K x 18 ZBT SRAM for each XV26000
- 4 16-bit Low Voltage Differential Signaling (LVDS) headers (34-pin)

12



- 25-pin parallel port
- USB interface
- 8Mx8 Flash EPROM
- On-board 50 MHz system clock
- 2 10-bit LEDS, 4-bit DIP switch

LED Displays

Channel 4 hne

SX-ilinx Virtex-II 6000

12-bit A/D

- 4 Channel L

Channel 4 12-bit D/A
12-bit AID 

IS

F4Channiels L

Figure 3.1-1: GVA FPGA Board. Simplified block diagram of the GVA-350
DSP hardware accelerator. Two Virtex-II 6000s and 4 channels of A/D and D/A are
ideal for prototyping various DSP algorithms involving analog signals.

The GVA-350 is the ideal board for testing signal processing concepts which involve
analog signals due to the fact that the board has 4 separate 100 MSPS, 12-bit channels of
A/D and D/A. All eight channels are fed directly into/from one Virtex-II FPGA (referred
to by the company as the 'analog' FPGA). A 203-bit bus connects this FPGA with the
other Virtex-II (referred to as the 'digital' FPGA due to the fact that it interfaces with
various ports such as USB, and LVDS).

13



3.2 Transmitter, Channel, and Receiver Configuration

In order to test the interference excision processor, a suitable Direct Sequence
Spread Spectrum waveform had to be utilized. For simplicity, a DSSS waveform was
developed within the FPGA. The transmitter can be seen in Figure 3.3-1 and the receiver
in Figure 3.3-2. For the next phase of testing, the transmitter and channel will not be
included within FPGA. To include as many 'real world effects' as possible for the
jammer (A/D effects, for example), an analog signal source is used. A Hewlett Packard
function generator was used as the jamming source. A Firebird 6000A bit error rate
monitor was used to document performance. A bit pattern was sent from the Firebird,
along with a clock signal, to the 25-pin 'parallel port' connector on the GVA-350. This
signal was then fed to the DSSS transmitter for encoding. The transmitted DSSS signal
was then added to channel 1 from the A/D converter. This is the 'simplified' channel.
The result was either routed to the DSSS receiver (for baseline results) or routed to the
excision filter followed by the DSSS receiver. Thus, relative performance gains were
calculated rather than absolute gains. This configuration can be seen in Figure 3.2-1.

Jamming Source

DSSS
Transmitter+

S~DSSS
Receiver

Figure 3.2-1: Simplified Block Diagram of Test System. Internally generated DSSS
transmitter and receiver are tested with real analog jammer. Bit error rate monitor
verifies performance.

14



3.3 DSSS Transmitter/Receiver

An 11-tap shift register was used to develop the DSSS waveform. The sampling
rate for this design was set at 25 MHz. This sampling rate is also the internal clock rate
of the processor. Every sample that is produced by the A/D converter gets processed by
this highly pipelined excision processor. There is no buffering or decimation of incoming
samples. With more time spent on optimizing the design from a logic perspective, and
use of better FPGA place and route tools, a significantly higher clock rate could be
achieved, but for this phase of the research, 25 MHz was sufficient.

Given the 25 MHz system clock and a requirement of 4 samples per pseudo-
random (PN) DSSS chip, the PN chip rate equals 6.25 MHz. A processing gain of 128
was chosen, thus resulting in a data rate of 48.8 KHz. A series of counters were used to
divide-down the system clock to achieve the PN chip rate and the data rate clocks. The
data rate clock was fed back to the Firebird in order to generate the exact bit timing.

1 2 3 4 6 7 8

FDCP Direct Sequence Spread Spectrum
A . .opI 6. (DSSS) Transmitter A

LFDCP FDCF MDCP FDCP LFDCP LFDCP LFDCP F C FDCP

FDCP FDCP

S. ... .. ..
Ca4CC

25; Mc,0z clock... th-.. .2°00. . .

43.8 KHz Data clock

D D

1 2 3 4 5 6 7 a

Figure 3.3-1: Direct Sequence Spread Spectrum (DSSS) Transmitter. This
module (along with the receiver) was developed in order to test the excision system.

The details of the FFT processor will be discussed shortly, but it is important to
note that it uses 16-bit input and output ports. Because of this, it was decided that all data
bit widths would be set to this value. Therefore, compensation for the 12-bit A/D's and
D/A's would be needed. For the A/D's, 'sign extension' or simply copying bits 13
through 16 with the most significant bit (MSB) of the A/D's 12 bits was all that was

15



needed. For the D/A's, two conversions had to be made: first a reduction from 16 to 12
bits, and then a conversion to 'offset binary'. Offset binary is used by the D/A's because
they are limited to an output voltage range of 0 to 0.5 volts (thus no negative voltage
swings). Therefore, a full positive value for the D/A would be 0.5 volts and would
represent the binary number '011111111111'. Zero (000000000000) would be 0.25
volts, and the largest negative number (100000000000) would equal 0.0 volts. SPW was
used to create a converter for both the A/D's and the D/A's. It is important to keep in
mind that it is more difficult to transition to the D/A than the A/D, due to the fact that
'scaling' of the 16-bit internal bus down to the 12 D/A is critical. Incorrectly discarding
the upper or lower 4 bits can result in erroneous results.

1 2 3 4 5 6 7 8

F FDCP Direct Sequence Spread Spectrum (DSSS) Receiver

BB

CE•4CE. . . .

C94CE hres_200
C CB2CE

DF

1 2 3 4 5 6 7 8

Figure 3.3-2: Direct Sequence Spread Spectrum (DSSS) Receiver. This
module (along with the transmitter) was developed in order to test the excision system.
Fixed channel delay, along with synchronous timing, result in ease of implementation.

The DSSS receiver was greatly simplified in this design due to the fact that
synchronization was trivial. With the transmit and receive PN code timing error a
constant delay, despreading was simply a matter of determining that delay. In addition,
because both the transmitter and receiver use the same clock, clock recovery was not a
issue. The diagram for the DSSS receiver can be seen in Figure 3.2-2. This schematic is
very similar to the transmitter, with the exception of the 'integrate and dump' logic which
is used for despreading of the DSSS signal.

16



4.0 Test Results

In order to demonstrate and verify correct operation of several subsystems in this
overall design, various signals were routed to the 12-bit D/A converters of the GV board.
Up to 4 signals could be analyzed at any one time. These signals were then sent to an
Agilent Technologies 54622D Digital Oscilloscope. The following screen captures
include descriptive summaries.

Figure 4.0-1: The DSSS Signal Magnitude Spectrum. This time-domain
display (oscilloscope) actually represents frequency samples, i.e., the 16-bit output from
the 1024-pt Fast Fourier Transform. This display represents the real and imaginary
samples after they are sent to a log/magnitude translator.

17



Figure 4.0-2: FFT-Processed Time Waveforms. The DSSS PN waveforms
shown here after being processed by the frequency domain excision filter. Note the
effect of staggered data paths and raised cosine windowing. In this example, no jammer
was present, and thus, no frequency samples were excised.

Figure 4.0-3: Direct Sequence Spread Spectrum PN-chips. This close-up view
of the in-phase channel of the DSSS waveform shows the effect of raised cosine
windowing.

18



Figure 4.0-4: DSSS Signal Spectrum with Jamming. The DSSS signal
(magnitude spectrum) with a CW jammer present. In this case, the excision filter is
disabled. Note the spectral containment of the CW jammer due to the cosine windowing.
Clearly, one can see the advantage of transforming to the frequency domain in order to
precisely remove the jammer, and, at the same time, distorting the desired signal as little
as possible.

Figure 4.0-5: DSSS Signal with Jamming-Excision Disabled. This time
domain view of the DSSS signal (in-phase only) demonstrates how the CW jammer
distorts the waveform. In this case, the excision filter is disabled. Note the lack of any
discernable DSSS PN-chips which were seen in Figure 4.0-3. One can clearly see that in
this 'domain', excision is not possible.

19



Can c

Figure 4.0-6: DSSS Signal with Jamming - Excision Enabled. The DSSS
signal (in-phase only) with the CW jammer present. In this case, the excision filter is
enabled. Note the discernable DSSS PN-chips, which were absent in the previous figure.

Figure 4.0-7: DSSS Signal Spectrum with Jamming - Excision Enabled.
The DSSS signal (top: spectrum, bottom: in-phase time domain) with the CW jammer
present. In this case, the excision filter is enabled. Note the absence of the CW spectral
lines in the top waveform - which were present in Figure 4.0-4.

20



Probably the most important 'figure of merit' of this type of filter would be its
jammer suppression. How much better can the desired spread spectrum signal do with
the filter enable vs. disabled? Well, the short answer to that question is: that cannot be
determined at this time due to the filter's robust performance. The performance envelope
of the combination spread spectrum signal and excision unit is beyond that of the fixed-
point numbering system and A/D converters of the test setup of Figure 3.2-1. In-other-
words, the filter performs so well, we cannot test the full extent of its performance in its
current test configuration.

Dynamic range:

16-bit fixed-point numbering system: 16 bit x 6 dB/bit = 96 dB

12-bit analog-to-digital converter: 12 bit x 6 dB/bit = 72 dB

The A/D converter has a 'realistic' dynamic range of approximately 68 dB due to
implementation losses. Factoring in the DSSS signals 42 dB of processing gain, there is
simply not enough dynamic range present to test the filter.

5.0 Conclusions

This effort had a two-fold objective: develop an efficient methodology for
creating digital systems on FPGAs, and proving this methodology by successfully
developing a complex digital system. The interference excision filter and DSSS system,
with over 5 million logic gates, was successfully developed in a relatively short time -
approximately 6 months. The Xilinx Engineering Capture System allows schematic level
design of complex digital systems. The integration of CoWare's Signal Processing
Worksystem with the Xilinx Integrated Software Environment (which includes the
Engineering Capture System and the Xilinx LogiCore intellectual property suite) resulted
in two software systems which greatly complemented each other, virtually eliminating
the need to code in either VHDL or Verilog Hardware Description Language.

The interference excision filter will be used again in an upcoming R.F.
watermarking demonstration system. The watermarking system includes a Quaternary
Phase-Shift Keying (QPSK) receiver based upon the Costas loop carrier synchronizer [5].
This receiver has been successfully developed using this FPGA testbed. Thus, two
complex digital systems have been successfully developed to date.

The schematic-based nature of this design methodology is very intuitive from an
engineering standpoint, and can easily be understood by designers not familiar with this
project. One could argue that revisiting the design, after a period of time, for re-use or re-
design, is much easier and more intuitive than reviewing large amounts of VHDL code.
After several years of use, we will see if this argument holds true.

21



Future plans for this testbed include integration with the DSP-based in-house
testbed and upgrades to the FPGA hardware, thus allowing maximum flexibility and
performance when designing complex Air Force demonstration systems.

6.0 References

[1] http://xilinx.corn'

[2] http://altera.com/

[3] http://www.coware.com/

[4] P. T. Capozza, B. J. Holland, T. M. Hopkinson, and R. L. Landrau, "A Single-
Chip Narrow-Band Frequency-Domain Excisor for a Global Positioning System
(GPS) Receiver," in IEEE Journal of Solid-State Circuits, VOL. 35, NO. 3, Mar
2000.

[5] S. Benedetto, E. Biglieri, and V. Casellani, "Digital Transmission Theory".
Englewood Cliffs, N.J.: Prentice-Hall.

22


